问题: xe^x(sinx-cosx)的不定积分
xe^x(sinx-cosx)的不定积分
解答:
介绍一种给数学系的学生的方法.
设I=∫xe^x(cosx+isinx)dx=
=∫xe^[x(1+i)]dx=
=1/(1+i)∫xd[e^[x(1+i)]=
=[1/(1+i)][xe^[x(1+i)]-1/(1+i)∫e^[x(1+i)]dx=
=[1/√2]e^[-iπ/4][xe^[x(1+i)]-[1/2]e^[-iπ/2]e^[x(1+i)]+C=
=[xe^x/√2]e^[i(x-π/4)]-[e^x/2]e^[i(x-π/2)]+C=
={[xe^x/√2]cos(x-π/4)-[e^x/2]cos(x-π/2)}+
+i{[xe^x/√2]sin(x-π/4)-[e^x/2]sin(x-π/2)}+C
==>
∫xe^x(-cosx+sinx)dx=
=[xe^x/√2][sin(x-π/4)-cos(x-π/4)]-
-[e^x/2][sin(x-π/2)-cos(x-π/2)]+C=
=-xe^xcosx+[e^x/2][sinx+cosx]+C
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。