首页 > 留学知识库

问题: xe^x(sinx-cosx)的不定积分

xe^x(sinx-cosx)的不定积分

解答:

介绍一种给数学系的学生的方法.

设I=∫xe^x(cosx+isinx)dx=
=∫xe^[x(1+i)]dx=
=1/(1+i)∫xd[e^[x(1+i)]=
=[1/(1+i)][xe^[x(1+i)]-1/(1+i)∫e^[x(1+i)]dx=
=[1/√2]e^[-iπ/4][xe^[x(1+i)]-[1/2]e^[-iπ/2]e^[x(1+i)]+C=
=[xe^x/√2]e^[i(x-π/4)]-[e^x/2]e^[i(x-π/2)]+C=
={[xe^x/√2]cos(x-π/4)-[e^x/2]cos(x-π/2)}+
+i{[xe^x/√2]sin(x-π/4)-[e^x/2]sin(x-π/2)}+C
==>
∫xe^x(-cosx+sinx)dx=
=[xe^x/√2][sin(x-π/4)-cos(x-π/4)]-
-[e^x/2][sin(x-π/2)-cos(x-π/2)]+C=
=-xe^xcosx+[e^x/2][sinx+cosx]+C