问题: 31.有log<3>a1+log<3>a2+...+log<3>a10=10成立;(A)
31.有log<3>a1+log<3>a2+...+log<3>a10=10成立;(A)
证明:
(1)等比数列{an},a5*a6=9==>(A)
(2)等比数列{an},(a5)^2*(a6)^2=81=/=>(A)
解答:
(1){an}是等比数列
a1*a10=a2*a9=a3*a8=a4*a7=a5*a6
a5*a6=9=3^2
a1*a2*...a10=(a5*a6)^5=3^10
a5*a6=a1q^4*a1q^5=a1^2q^9>0
q>0
log<3>a1*a2*...a10=log<3>3^10
log<3>a1+log<3>a2+...+log<3>a10=10
(2)a5^2*a6^2=81 ==>>a5*a6=+/-9
q>0 可能 q<0=\+>>(A)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。