首页 > 留学知识库

问题: 椭圆x^2/9+y^2/4=1的弦过点A(1,1)且被A平分,则弦所在直线方程为?最好用点差法做

解答:

设椭圆的弦为PQ, P(a,b),Q(m,n)
点P、Q在椭圆上:
a^2/9+b^2/4=1 ...(1), m^2/9+n^2/4=1 ...(2)
(1)-(2): (a+m)(a-m)/9 +(b+n)(b-n) =0 ...(3)
弦PQ中点为A(1,1): (a+m)/2 =1, (b+n)/2 =1
(3)==> (b-n)/(a-m)=-4/9 =弦PQ的斜率
因此,弦所在直线方程为:
y-1 =(-4/9)(x-1), 即:4x+9y-13=0