首页 > 留学知识库

问题: 求极值?

求函数f(x)=sinx+cosx在[0,2π]上的极值? (用二阶导数求极值)

解答:

f'(x)=cosx-sinx, f''(x)=-(sinx+cosx)
由f'(x)=cosx-sinx=0,0≤x≤π,得驻点x1=π/4, x2=5π/4,
∵ f''(π/4)=-[sin(π/4)+cos(π/4)]=-√2<0, ∴ x=π/4时,f(max)=√2,
又 f''(5π/4)=-[sin(5π/4)+cos(5π/4)]=√2>0, ∴ x=5π/4时,f(min)=-√2