问题: 高二数学题求助,快~
1.已知曲线y=f(x)在点P(x1,F(x1))处的切线L的倾斜角α=π/2,求切线L的方程.
2.在抛物线y=2+x-x²上,哪一点的切线处于下述位置?
(1)与x轴平行.
(2)平行于第一象限角的平分线.
(3)与x轴相交成45°角.
解答:
1. 倾斜角α=π/2 ==> 切线平行于Y轴 ==> 切线方程:x =x1
2. y' = -2x+1 = 抛物线在点[x,y(x)]处切线斜率
(1) 切线与x轴平行:y' = -2x+1=0
==> x=1/2, y=9/4 ==> 点(1/2,9/4)
(2) 平行于第一象限角的平分线:y' = -2x+1=1
==> x=0, y=2 ==> 点(0,2)
(3) 与x轴相交成45°角:y' = -2x+1=1,或-1
==> (x,y)=(0,2),(1,2)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。