问题: 求椭圆x^2+2y^2=1中斜率为2的平行弦的中点轨迹方程
解答:
求椭圆x^2+2y^2=1中斜率为2的平行弦的中点轨迹方程
解:设斜率为2的直线方程L为:y=kx+b=2x+b
联立:x^2+2y^2=1 y=2x+b
9x^+8bx+2b^-1=0
L于椭圆交于A(x1,y1)、B(x2,y2)两点。AB中点D(x,y)
x1+x2=-8b/9=2x x=-4b/9 b=-9x/4
y1+y2=2(x1+x2)+2b=4x+2b=2y
y=2x+b=8x/4-9x/4=-x/4
∴4y+x=0
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。