首页 > 留学知识库

问题: 用第二换元积分法计算

∫dx/[(1+x^2)^2]

解答:

令x=tant,则1+x^2=1+(tant)^2=(sect)^2,dx=dtant=(sect)^2dt
sin2t=2tant/[1+(tant)^2]=2x/(1+x^2)
所以dx/(1+x^2)^2
=(sect)^2dt/(sect)^4
=dt/(sect)^2
=(cost)^2dt
=(1+cos2t)dt/2
=t/2+(1/4)sin2t+C
=(1/2)arctanx+x/(1+x^2)+C.