首页 > 留学知识库

问题: 距离

直角三角形ABC的三个顶点分别是A(0,3)B(4,0)C(0,0) ,在边AB和边BC上各有一动点M与N,使得S△BMN=0.5S△ABC,求 ︳MN ︳的最小值?

解答:

易得 |BA| = 5 , |BC| = 4 , |AC| = 3 ,
sin∠ABC = 3/5 , cos∠ABC = 4/5
设 |BM| = m , |BN| = n
因为 S△BMN = (1/2)|BM||BN|sin∠ABC = (1/2)*m*n*sin∠ABC
   S△ABC = (1/2)|BA||BC|sin∠ABC = (1/2)*5*4*sin∠ABC
 又 S△BMN = (1/2)S△ABC
所以 m*n = (1/2)*5*4
 即 mn = 10
由余弦定理得 |MN|² = m² + n² - 2mncos∠ABC
          = m² + n² -(8/5)mn
          ≥ 2mn -(8/5)mn
          = (2/5)mn
          = 4
所以 |MN| ≥ 2
其中,当 m = n = √10 时 , 取等号
所以 |MN| 的最小值为 2