问题: 24.若实数x,y满足:x^2+y^2-2x+4y=0,求x-2y
24.若实数x,y满足:x^2+y^2-2x+4y=0,求x-2y的最大值
解答:
24.解:已知即(x-1)^2+(y+2)^2=5
设t=x-2y,整理即x-2y-t=0,显然这是一条斜率一定(1/2)的动直线(因为有未知数t),而该直线和圆(x-1)^2+(y+2)^2=5必须有交点(因为都有同样的x,y),所以最值当且仅当直线与圆相切时取到,即
d=|1-2(-2)-t|/√5=|5-t|/√5=√5
|t-5|=5,解得t=0,10
故x-2y的最大值是10。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。