首页 > 留学知识库

问题: 高三数学

已知一个椭圆,它的中心在圆心左焦点F(-√3,0)且右顶点B(2,0),设点A(1,1/2)
(1) 求土员的标准方程
(2) 若P是椭圆上的动点,求线段PA中心M的轨迹方程
(3) 过原点O的直线椭圆于BC,求⊿ABC

解答:

已知一个椭圆,它的中心在圆心左焦点F(-√3,0)且右顶点B(2,0),设点A(1,1/2)
(1) 求土员的标准方程
(2) 若P是椭圆上的动点,求线段PA中心M的轨迹方程
(3) 过原点O的直线椭圆于BC,求⊿ABC
解: c=√3 a=2 b=1
椭圆标准方程: (x^/4)+y^=1
(2)p(2cosα,sinα) A(1。1/2)
线段PA中心M(x,y)
2x=1+2cosα cosα=(2x-1)/2
2y=sinα+1/2 sinα=(4y-1)/2
sin^α+cos^α=1
(2x-1)^+(4y-1)^=4
[x-(1/2)]^+{[y-(1/4)]^/(1/4)]}=1
(3)
求⊿ABC ???