首页 > 留学知识库

问题: 求单调递减区间?

函数y=sin^2[(x/2) - (pi/6)]的单调递减区间怎么求啊?

解答:

y=sin^2[(x/2)-(π/6)]的单调递减区间
解:
利用cos2a=1-2(sina)^2,有(sina)^2=(1-cos2a)/2,则
y={sin[(x/2)-(π/6)]}^2
=[1-cos(x-π/3)]/2
=(1/2)[1-cos(x-π/3)]

cos(x-π/3)在2kπ+π≤x-π/3≤2kπ+2π单调递增,即
(2k+1)π+π/3≤x≤2(k+1)π+π/3内单调递增,
则y 在(2k+1)π+π/3≤x≤2(k+1)π+π/3单调递减