首页 > 留学知识库

问题: 19.证明:3a^2+ab-2b^2=0.

19.证明:3a^2+ab-2b^2=0
(1)a/b-b/a-(a^2+b^2)/ab=2 ==>3a^2+ab-2b^2=0
(2)ab/(a^2-2b^2)=-1 =/=>3a^2+ab-2b^2=0

解答:

19.证明:3a^2+ab-2b^2=(a+b)(3a-2b)=0
(1)由a/b-b/a-(a^2+b^2)/ab=2,得
(a^2-b^2)/ab-(a^2+b^2)/ab=2,即
-2b^2/ab=-2b/a=2,亦即
a+b=0==>3a^2+ab-2b^2=0
(2)ab/(a^2-2b^2)=-1,即
a^2+ab-2b^2=0,因式分解得
(a-b)(a+2b)=0
解得a=b或a+2b=0=/=>3a^2+ab-2b^2=0