首页 > 留学知识库

问题: 如何推导简单公式?

(1)若f(x)=sinx,则f'(x)=cosx
(2)若f(x)=cosx,则f'(x)=-sinx


解答:

呵呵.
(1)f'(x)=(x→Δx)lim[(sinx-sinΔx)/(x-Δx)]
````````=(x→Δx)lim[2cos(x/2+Δx/2)sin(x/2-Δx/2)/(x→Δx)]
````````=(x→Δx)lim[2cos(x/2+Δx/2)sin(x/2-Δx/2)/(x/2-Δx/2)]*1/2
````````=(x→Δx)lim[2cosx*1]*1/2
````````=cosx

(2)f'(x)=(x→Δx)lim[(cosx-cosΔx)/(x-Δx)]
````````=-(x→Δx)lim[2sin(x/2+Δx/2)sin(x/2-Δx/2)/(x-Δx)]
````````=-(x→Δx)lim[2sinxsin[(x-Δx)/2]/[(x-Δx)/2]]*1/2
````````=-(x→Δx)lim[2sinx*1/2]
````````=-sinx