问题: 如何推导简单公式?
(1)若f(x)=sinx,则f'(x)=cosx
(2)若f(x)=cosx,则f'(x)=-sinx
解答:
呵呵.
(1)f'(x)=(x→Δx)lim[(sinx-sinΔx)/(x-Δx)]
````````=(x→Δx)lim[2cos(x/2+Δx/2)sin(x/2-Δx/2)/(x→Δx)]
````````=(x→Δx)lim[2cos(x/2+Δx/2)sin(x/2-Δx/2)/(x/2-Δx/2)]*1/2
````````=(x→Δx)lim[2cosx*1]*1/2
````````=cosx
(2)f'(x)=(x→Δx)lim[(cosx-cosΔx)/(x-Δx)]
````````=-(x→Δx)lim[2sin(x/2+Δx/2)sin(x/2-Δx/2)/(x-Δx)]
````````=-(x→Δx)lim[2sinxsin[(x-Δx)/2]/[(x-Δx)/2]]*1/2
````````=-(x→Δx)lim[2sinx*1/2]
````````=-sinx
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。