首页 > 留学知识库

问题: 等比等差级数应用题

巳知{an}是首项为a公比q≠1的等比数列;a1,2a7,3a4成等差
①求证12S3,S6,S16-S6成等比
②求和Tn=a1+2a3+3a7+....+na3n-2

解答:

巳知{an}是首项为a公比q≠1的等比数列;a1,2a7,3a4成等差
①求证12S3,S6,S12-S6成等比
②求和Tn=a1+2a3+3a7+....+na3n-2
解: a1=a a7=aq^6 a4=aq^3
4a7=a1+3a4 4aq^6=a+3aq^3
q≠1 q^3=-1/4
令a/(1-q)=u
S6=a1(1-q^6)/(1-q)=(15/16)×[a/(1-q)]=15u/16
12S3=12a(1-q^3)/(1-q)=15u
S6/12S3=1/16
S12=a1(1-q^12)/(1-q)=17×15u/16^
S12-S6=15u/16^
(S12-S6)/S6=1/16
∴①求证12S3,S6,S12-S6成等比
(2)Tn=a1+2a4+3a7+....+na(3n-2)
=a+2aq^3+3aq^6+.......+naq^(3n-3)
(q^3)Tn=aq^3+2aq^6+3aq^9+.......+naq^3n
Tn-(q^3)Tn=a+aq^3+aq^6+......+aq^(3n-3)-naq^3n
=a×[1-(q^3)^n]/(1-q^3)-naq^3n
5Tn/4=4a ×[1-(-1/4)^n]/5-na(-1/4)^n
Tn=16a[1-(-1/4)^]/25-[4na(-1/4)^/5]