首页 > 留学知识库

问题: n项和Sn

数列{an}中,an=2n-1(n为奇数)且an=3^n(n为偶数),求其前n项和Sn

解答:

解:
1) n为奇数时,
Sn={1+3+5+…+(n-2)+n}+{3^2+3^4+3^6+…+3^(n-3)+3^(n-1)}
={[1+n]*[(n+1)/2]/2}+{[3^(n+1)-3^2]/(3^2-1]
=(1/4)*(n+1)^2+(9/8)*[ 3^(n-1)-1]

2) n为偶数时,
Sn=S(n-1)+3^n
=[(1/4)*[(n-1)+1]^2+(9/8)*{3^[(n-1)-1]-1}]+3^n
=(1/4)*n^2+(9/8)*( 3^n-1)

故 Sn=(1/4)*(n+1)^2+(9/8)*[3^(n-1)-1] (n为奇数时)
或 Sn=(1/4)*n^2+(9/8)*(3^n-1) (n为偶数时)