问题: 证明:(1)xy>0时,x/y+y/x>=2.
证明:(1)xy>0时,x/y+y/x>=2
(2)xy<0时,x/y+y/x<=-2
解答:
证明:(1)xy>0时,x/y+y/x>=2
(2)xy<0时,x/y+y/x<=-2
证明:
∵[√|x/y|-√|y/x|]^≥0
∴[√|x/y|]^+[√|y/x|]^-2(x/y)×(y/x)≥0
|x/y|+|y/x|≥0
xy>0时 x/y+y/x≥2
xy<0时 -x/y-y/x≥2
x/y+y/x≤-2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。