首页 > 留学知识库

问题: 求极限


lim [1/1*3 +1/1*5 +…… +1/(2n-1)(2n+1)]
x无穷

解答:

Sn=1/(1*3)+1/(3*5)+1/(5*7)+……+1/[(2n-1)(2n+1]
=(1/2){(3-1)/(1*3)+(5-3)/(3*5)+(7-5)/(5*7)+……
+[(2n+1)-(2n-1)]/[(2n-1)*(2n+1)]
=(1/2){(1-1/3)+(1/3-1/5)+(1/5-1/7)+……+[1/(2n-1)-1/(2n+1)]}
=(1/2)[1-1/(2n+1)]
=(1/2)*2n/(2n+1)
=n/(2n+1)
=1/(2+1/n)
所以n->∞时,limSn=1/(2+0)=1/2.