问题: 求极限
lim [1/1*3 +1/1*5 +…… +1/(2n-1)(2n+1)]
x无穷
解答:
Sn=1/(1*3)+1/(3*5)+1/(5*7)+……+1/[(2n-1)(2n+1]
=(1/2){(3-1)/(1*3)+(5-3)/(3*5)+(7-5)/(5*7)+……
+[(2n+1)-(2n-1)]/[(2n-1)*(2n+1)]
=(1/2){(1-1/3)+(1/3-1/5)+(1/5-1/7)+……+[1/(2n-1)-1/(2n+1)]}
=(1/2)[1-1/(2n+1)]
=(1/2)*2n/(2n+1)
=n/(2n+1)
=1/(2+1/n)
所以n->∞时,limSn=1/(2+0)=1/2.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。