首页 > 留学知识库

问题: lim

lim(4/5-6/7)+(4/5^2-6/7^2)+...+(4/5^n-6/7^n)/(5/6-4/5)+(5/6^2-4/5^2)+...+(5/6^n-4/5^n)=?
n→∞

解答:

分子=(4/5-6/7)+(4/5^2-6/7^2)+……+(4/5^n-6/7^n)
=(4/5+4/5^2+……+4/5^n)-(6/7+6/7^2+……+6/7^n)
=[4/5-4/5^(n+1)]/(1-1/5)-[6/7-6/7^(n+1)]/(1-1/7]
=(1-1/5^n)-(1-1/7^n)
=1/7^n-1/5^n

同样,分母=1/5^n-1/6^n
所以,原式=(n->∞)lim(1/7^n-1/5^n)/(1/6^n-1/5^n)
,,,,,,,,,,=,,,,,,,,,,[(5/7)^n-1]/[(5/6)^n-1]
,,,,,,,,,,=(0-1)/(0-1)=-1/(-1)=1.