问题: 复数
求1的n次方根的和与积。
解答:
设1的n次方根为 ak = cos(2kπ/n)+isin(2kπ/n), k=1,2,...,n
--->a1*a(n-1)=an=1
设:S=a1+a2+...+a(n-1)+an
--->a1*S=a2+a3+...+an+a1 = S
--->S(a1-1)=0, 又a1≠1
--->S=0
设:T=a1*a2*...*an = a1^(1+2+...+n)=a1^[n(n+1)/2]
= cos(n+1)π+isin(n+1)π
--->n为奇数时,T=1
n为偶数时,T=-1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。