问题: 求证2(cosa-sina)/(1+sina+cosa)=cos/(1+sina)-sina/(1+
求证2(cosa-sina)/(1+sina+cosa)=cos/(1+sina)-sina/(1+cosa)
解答:
2(cosa-sina)/(1+sina+cosa)=cos/(1+sina)-sina/(1+cosa)
证明:
(1+sinα+cosα)+2sinαcosα=(1+sinα+cosα)+2sinαcosα
=(sinα+cosα)+(sinα)^+(cosα)^+2sinαcosα
=(sinα+cosα)+(sinα+cosα)^
=(sinα+cosα)(1+sinα+cosα)
(cosα-sinα)(1+sinα+cosα)+2(cosα-sinα)sinαcosα=(cosα+sinα)(cosα-sinα)(1+sinα+cosα)=([(cosα)^-(sinα)^](1+sinα+cosα)
2(cosα-sinα)(1+sinα+cosα)+2(cosα-sinα)sinαcosα=(cosα-sinα)(1+sinα+cosα)+([(cosα)^-(sinα)^](1+sinα+cosα)
∴2(cosα-sinα)(1+sinα+cosα+sinαcos)=(1+sinα+cosα)[cosα+(cosα)^-sinα-(sinα)^]
2(cosα-sinα)/(1+sinα+cosα)=[cosα(1+cosα)-sinα(1+sinα)]/(1+sinα)(1+cosα)=cosα/(1+sinα)-sinα/(1+cosα)
证毕
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。