首页 > 留学知识库

问题: 求值

Tan(π/4+a)=2,求sin2a+sin^2a+cos2a的值

解答:

tan(π/4+a)=2 =(tana +tanπ/4)/(1-tana*tanπ/4)
==> tana =1/3
sin2a+(sina)^2+cos2a
= 2sinacosa +(sina)^2 +(cosa)^2 -(sina)^2
= [2sinacosa +(cosa)^2]/[(cosa)^2 +(sina)^2]
= (2*tana +1)/[1 +(tana)^2]
= 3/2