首页 > 留学知识库

问题: 直线与圆锥曲线

过抛物线焦点的一条直线与它交于两点P,Q,通过点P和抛物线的顶点的直线交准线于点M,求证:MQ平行于抛物线的轴.

解答:

抛物线: y^2=2px,焦点F(p/2,0),顶点O(0,0),准线: x=-p/2 ...(1)
直线PQ: y=k(x -p/2), 过焦点F
P(y1^2/2p,y1), Q(y2^2/2p,y2)是直线PQ与抛物线的二个交点
y1 =k(y1^2/2p -p/2) ...(2)
y1 =k(y1^2/2p -p/2) ...(3)
(2) ==> -p^2/y1 =2p/k -y1 ...(4)
(2)-(3) ==> k =(y2-y1)/(y2^/2p -y1^2/2p) =2p/(y1+y2) ...(5)
直线PO: y =(2p/y1)x ...(6)
(1)(6) ==> M(-p/2,-p^2/y1)
(4)(5) ==> Ym = -p^2/y1 =2p/k -y1 =(y1+y2) -y1 =y2 =Yq
因此,MQ平行于抛物线的轴