问题: 概率
一枚质量均匀的正方体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次。
(1)用列表法表示出朝上的面上的数字所有可能出现的结果;
(2)记两次朝上的面上的数字分别为p、q,若把p、q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数y=12/x的图像上的概率。
解答:
列表如下:
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
p,q一共有四种情况:(2,6) (6,2) (3,4) (4,3)
所以概率p=4/36=1/9
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。