首页 > 留学知识库

问题: 高1期中考试3

1
求证(1+sinb-cosb)/(1+sinb+cosb)=tan(b/2)

解答:

证明:因为tan(b/2)=sin(b/2)/cos(b/2)
=[2sin(b/2)cos(b/2)]/[2cos(b/2)cos(b/2)]
=sinb/(1+cosb),
tan(b/2)=sin(b/2)/cos(b/2)=[2sin(b/2)sin(b/2)]/[2sin(b/2)cos(b/2)]
=(1-cosb)/sinb,
所以,tan(b/2)=sinb/(1+cosb)=(1-cosb)/sinb
=(1+sinb-cosb)/(1+sinb+cosb).(比例的等比性质)