问题: 高1期中考试3
1
求证(1+sinb-cosb)/(1+sinb+cosb)=tan(b/2)
解答:
证明:因为tan(b/2)=sin(b/2)/cos(b/2)
=[2sin(b/2)cos(b/2)]/[2cos(b/2)cos(b/2)]
=sinb/(1+cosb),
tan(b/2)=sin(b/2)/cos(b/2)=[2sin(b/2)sin(b/2)]/[2sin(b/2)cos(b/2)]
=(1-cosb)/sinb,
所以,tan(b/2)=sinb/(1+cosb)=(1-cosb)/sinb
=(1+sinb-cosb)/(1+sinb+cosb).(比例的等比性质)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。