问题: 高一数学题,三角函数的~~~help
已知cos^4A/cos^2B+sin^4A/sin^2B=1 且 A不等于k*90度及
A不等于k*180度+45度,k属于整数,求证:cos^4B/cos^2A+sin^4B/sin^2A=1
解答:
原式是: (cosA)^4/(cosB)^2 + (sinA)^4/(sinB)^2 = 1 吗?
若是, 则:
1 = (cosA)^4/(cosB)^2 + (sinA)^4/(sinB)^2
={(cosA)^4 *(sinB)^2 + [1 -(cosA)^2]^2 *(cosB)^2}/[(cosB)^2 *(sinB)^2]
= [(cosA)^4 + (cosB)^2 - 2*(cosA)^2 *(cosB)^2]/[(cosB)^2 *(sinB)^2]
因此: (cosA)^4 + (cosB)^2 - 2*(cosA)^2 *(cosB)^2 = (cosB)^2 *(sinB)^2
==> (cosA)^4 + (cosB)^4 - 2*(cosA)^2 *(cosB)^2 = 0
==> (cosA)^2 = (cosB)^2, (sinA)^2 = (sinB)^2
因此:
(cosB)^4/(cosA)^2 + (sinB)^4/(sinA)^2
= (cosB)^2 + (sinB)^2
= 1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。