问题: 高考数学模拟
求定义狱和值遇
f(x)=
log(2) [(x+1)/(x-1)]+log(2)(x-1)+log(2)(p-x)
解答:
定义域有不等式组
(x+1)/(x-1) >0........(1)
x-1>0 ...........(2)
p-x>0 ..........(3)
====>定义域1<x<p
f(x)
=log(2) [(x+1)/(x-1)]+log(2)(x-1)+log(2)(p-x)
=log(2)[(x+1)(p-x)]
真数可化为
t=g(x)=-[x - (p-1)/2]² +(p+1)²/4
p>1 ===>p>(p-1)/2
讨论:
当,1<(p-1)/2 <p ===>p>3
==>值域
f(x)<log(2)(p+1)²/4 =2log(2)(p+1) -2
当(p-1)/2≤1 ===>1<p≤3
-[x - (p-1)/2]² +(p+1)²/4无最大最小但是t<g(1)
==>t<2(p-1)
==>值域
f(x)<1+log(2)(p-1)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。