问题: 椭圆
中心在原点,一个焦点为F1(0,根号50)的椭圆截直线y=3x-2所得弦的中点横坐标为1/2,求椭圆的方程
解答:
椭圆: x^2/b^2 +y^2/a^2 =1, c=根号50
a^2 =b^2 +c^2=b^2 +50 ...(1)
截直线得弦AB: A(x1,y2),B(x2,y2)
x1^2/b^2 +y2^2/a^2 =1 ...(2)
x2^2/b^2 +y2^2/a^2 =1 ...(3)
AB中点M(1/2,-1/2): x1+x2 =1, y1+y2 =-1
A、B在直线上:(y1-y2)(x1-x2) =3
(1)-(2): (x1+x2)(x1-x2)/b^2 +(y1+y2)(y1-y2)/a^2 =0
==> 1/b^2 -3/a^2 =0 ...(4)
(1)(4) ==> a^2=75, b^2 =25
椭圆方程: x^2/25 +y^2/75 =1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。