首页 > 留学知识库

问题: 帮忙

在数列{an}中,a1=1,a2=2,an+2=3an+1-2an(n∈N*),求满足log2a1+log2a2+…+log2an>100的最小的n值.

解答:

在数列{an}中,a1=1,a2=2,a(n+2)=3a(n+1)-2an(n∈N*),求满足log2a1+log2a2+…+log2an>100的最小的n值.
解: a(n+2)-a(n+1)=2[a(n+1)-an]
[a(n+2)-a(n+1)]/[a(n+1)-an]=2
令bn=a(n+1)-an 则 b(n+1)= a(n+2)-a(n+1) b(n+1)/bn=2
b1=a2-a1=1
bn=2^(n-1)=a(n+1)-an
a2-a1=2^0
a3-a2=2^1
a4-a3=2^2
...........
a(n+1)-an=2^n
式子两边相加:
a(n+1)-a1=2^0+2^1+2^2+2^3+...+2^n
=×[2^(n+1)-1]/(2-1)=2^(n+1)-1
an=2^n
∴log2a1+log2a2+…+log2an=log[2](a1×a2×...×an)
=log[2](2×2^×......×2^n)
=log[2](2^[n(n+1)/2])
=n(n+1)/2>100
n>13.6 n∈R
∴n≥14 [n]min=14