首页 > 留学知识库

问题: 不等式

证明1+1/(2√2)+……+1/(n√n)<3

解答:

1.
容易得:
(1+1/(2k))^2<k/(k-1),当k>1.
<==>
(1+1/(2k))<√[k/(k-1)]
<==>
1/(2(k)^(3/2))<1/√(k-1)-1/√k
<==>
1/(k)^(3/2)<2/√(k-1)-2/√k

2.
1+1/(2√2)+……+1/(n√n)<
<1+[2/√(2-1)-2/√2]+...+[2/√(n-1)-2/√n]=
=3-2/√n<3.