首页 > 留学知识库

问题: 高一数学

设Sn是等差数列﹛An﹜的前n项和,且1/3 S3与1/4 S4的等比中项为1/5 S5; 1/3 S3与1/4 S4的等差中项为1,求等差数列的通项An.﹙不知道为什么,分数粘贴不过来了,再WORD里还有呢,一粘过来全没了﹚

解答:

S3 =3a1+3d ===>S3/3 =`a1+d
S4 =4a1+6d ===>S4/4 = a1+1.5d
S5 =5a1+10d===>S5/5 = a1+2d

1/3 S3与1/4 S4的等比中项为1/5 S5
==>(a1+d)(a1+1.5d)=(a1+2d)²
1.5d²+2.5a1d =4d²+4a1d
2.5d²+1.5a1d=0
=>d(5d+3a1)=0
如果d=0 ==>a1=0 ===> S3=S4=S5=0不和题意
==>d≠0 ,a1 =-5d/3 ........(1)

S3/3与S4/4的等差中项为1,
==>a1+d+a1+1.5d =2
===>2a1+2.5d=2......(2)

(1),(2)===>d=-12/5
a1=4

an =4 +(n-1)(-12/5)=32/5 -12n/5