首页 > 留学知识库

问题: 高一数学

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,
Sn+2成等差数列,则q的值为

解答:

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为

(1)q=1时,{an}为常数列,Sn=na1, 显然满足条件
(2)q≠1时:Sn+1,Sn,Sn+2成等差数列--->2Sn = S(n-1)+S(n+1)
--->2a1(q^n-1) = a1[q^(n+1)-1] + a1[q^(n+2)-1]
--->2q^n = q^(n+1) + q^(n+2)
--->q²+q-2 = 0
--->(q-1)(q+2)=0--->q=-2,

综合(1)(2),q=1或q=-2