问题: 椭圆
若焦点是(0,±5√[2])的椭圆截直线3x-y-2=0所得的弦中点的横坐标是1/2,则该椭圆的方程是?
解答:
设椭圆与直线相交于AB点, AB在直线上,其中点也在直线上;
3x -y -2 = 0; 令 x = 1/2; y = 3x -2 = -1/2;
AB中点的坐标是(1/2, -1/2);
设AB的坐标为:(xa, ya), (xb, yb);
xa + xb = 1,
ya + yb = -1;
椭圆焦点是 (0,±5√[2]),
设椭圆为:
x^2/b^2 + y^2/a^2 = 1;
a>b>0;
a^2 + b^2 = c^2 = 50;
xa^2/b^2 + ya^2/a^2 = 1;
xb^2/b^2 + yb^2/a^2 = 1;
(xa+xb)(xa-xb)/b^2 + (ya+yb)(ya-yb)/a^2 = 0;
k = (ya-yb)/(xa-xb) = 3,
1/b^2 -3/a^2 = 0;
a^2 = 3b^2;
a^2 + b^2 = 50;
b^2 = 25/2;
a^2 = 75/2;
椭圆的方程是:
x^2/(25/2) + y^2/(75/2) = 1.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。