首页 > 留学知识库

问题: 高一数学

已知数列{an}的前n项和Sn=2的n次-1,求a1²+a2²+.....+an²

需要具体过程

解答:

s(n) = 2^n -1;
a(n) = s(n) - s(n-1)
= (2^n-1) - (2^(n-1) -1)
= 2^n-2^(n-1) = 2^(n-1)
a(n)/a(n-1) = 2^(n-1)/2^(n-2) = 2;
a(1) = 1;

(a(n))^2 = (2^(n-1))^2 = 2^(2n-2) = 4^n/4 =4^(n-1)
(a(n)/a(n-1))^2 = 4;
(a(1))^2 = 1,

a1^2 + a2^2 + ...+ an^2
= 1 + 4 + ... + 4^(n-1)
=(1-4^n)/(1-4)
= (4^n-1)/3