问题: 高一数学
已知数列{an}的前n项和Sn=2的n次-1,求a1²+a2²+.....+an²
需要具体过程
解答:
s(n) = 2^n -1;
a(n) = s(n) - s(n-1)
= (2^n-1) - (2^(n-1) -1)
= 2^n-2^(n-1) = 2^(n-1)
a(n)/a(n-1) = 2^(n-1)/2^(n-2) = 2;
a(1) = 1;
(a(n))^2 = (2^(n-1))^2 = 2^(2n-2) = 4^n/4 =4^(n-1)
(a(n)/a(n-1))^2 = 4;
(a(1))^2 = 1,
a1^2 + a2^2 + ...+ an^2
= 1 + 4 + ... + 4^(n-1)
=(1-4^n)/(1-4)
= (4^n-1)/3
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。