首页 > 留学知识库

问题: 一道代数题

若方程√(1-x^2)=x+m无实数解,则实数m的取值范围是

解答:

若方程√(1-x^2)=x+m无实数解,则实数m的取值范围是
解:√(1-x^2),→(1-x^2)≥0,→-1≤x≤1,
当m<-1,→x+m<0,√(1-x^2)=x+m无实数解
∴若方程√(1-x^2)=x+m无实数解,
则实数m的取值范围是 (-∞,-1)