问题: 微分方程问题14
解答:
z(t)=y(e^t)
==>
z'(t)=e^ty'(e^t)
==>
z''(t)=e^ty'(e^t)+e^(2t)y''(e^t)=
=z'(t)+e^(2t)y''(e^t).
==>
[z''(t)-z'(t)]+2z'(t)-2z(t)=e^t
==>
z''(t)+z'(t)-2z(t)=e^t
==>
z(t)=Ae^t+Be^(-2t)+te^t/3
==>
y(x)=Ax+B/x^2+xlnx/3
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。