首页 > 留学知识库

问题: 高等数学

1、设z=x^2+3y^2, x=3t y=sint 求dz/dt
2、设z=(Lnx)^cosy 求dz

解答:

1、设z=x^2+3y^2, x=3t y=sint 求dz/dt
2、设z=(Lnx)^cosy 求dz

1,
dz = 2xdx+6ydy
= (3t)*3dt+6sint*costdt
dz/dt = 9t+3sin3t;

2,
dz = (pz/px)dx+(pz/py)dy
= (cosy)(Lnx)^(cosy-1)*(1/x)dx
+ (lnx)^cosy*ln(lnx)*(-siny)dy
= (cosy)*(lnx)^(cosy-1)*(1/x)dx
-(siny)((ln(x)^cosy)*(ln(lnx))dy