首页 > 留学知识库

问题: 数学问题2

答案为C,请问如何解?

解答:

f(x) = n-1, n<=x <n+1;

f(x) = log_2(x);

x = 1, f(x) = 1-1=0, log_2(1)= 0, f(1)=log_2(1);
x = 2, f(2) = 1, log_2(2) = 1, f(2) =log_2(2);
x = 1/2, f(1/2) = -1, log_2(1/2) = -1, f(1/2)=log_2(1/2);

x > 2,
x = 2^u, u >1;
f(x) = 2^u -1 ,
log_2(x) = u, u>1, y=f(x) 与 y=log_2(x)在x>2无交点;
f(x)=log_2(x) 无解;

0<x<1/2,
f(x) = -1,
log_2(x) < log_2(1/2) = -1,
f(x)=log_2(x) 无解;

从而
f(x) = log_2(x) 有三个根, x = 1/2, x=1, x=2,
答案为C!