首页 > 留学知识库

问题: 已知an=log[(n+1)(底数)](n+2)(n∈N*)我们把乘积a1·a2·a3…an为整数的

已知an=log[(n+1)(底数)](n+2)(n∈N*)我们把乘积a1·a2·a3…an为整数的数n叫做“劣数”,则区间在(1,2008)内所有劣数的和为多少?

解答:

已知an=log(n+1)_(n+2)(n∈N*)我们把乘积a1·a2·a3…an为整数的数n叫做“劣数”,则区间在(1,2008)内所有劣数的和为多少?

an = log(n+1)_(n+2) = lg(n+2)/lg(n+1)

 a1·a2·a3…an
= (lg3/lg2)(lg4/lg3)*...*[lg(n+2)/lg(n+1)]
= lg(n+2)/lg2
= log2_(n+2) = m 为整数

--->n = 2^m - 2 ∈(1,2008)
--->2^m ∈(3,2011)
--->2≤m≤10 ..............共有9个
--->“劣数”n = 2^m-2 共有9个

n1+n2+...+n9
=[2²+2³+...+2^10]-2*9
=2^11 - (1+2) - 18
=2027