首页 > 留学知识库

问题: 关于函数

设f(X)是定义在R 上偶函数, 其图像关于直线x=1 对称, 对任意x1,x2∈[0,1/2], 都有 f(x1+x2)= f(x1)*f(x2), 且f(1)=a>0.
(1).求f(1/2)及f(1/4);
(2).证明f(x)是周期函数.
(3).记an=f(2n+1/2n),求lim In an
lim为n→+∞

解答:

偶函数: f(x)=f(-x)
关于直线x=1对称: f(x)=f(2-x)=f(x-2)
==> f(x)是周期函数, 周期=2
f(0)=f(0+0)=[f(0)]^2 ==> f(0)=1,[舍去f(0)=0]
f(1)=f(1/2+1/2)=[f(1/2)]^2 ==> f(1/2)=a^(1/2)
f(1/2)=f(1/4+1/4)=[f(1/4)]^2 ==> f(1/4)=a^(1/4)
lim(an)=lim[f(2n+1/2n)] =lim[f(1/2n)] =f[lim(1/2n)] =f(0)=1
lim[In(an)] =Ln[lim(an)] =0