问题: 几道代数题请教高手
1. 已知a^2-a+1=0,则a^1995+1/a^1995=
2. 求证(b^2-3b-(b-1)√(b^2-4)+2)/(b^2+3b-(b+1)√(b^2-4)+2) * √((b+2)/(b-2))=(1-b)/(1+b)
3. 已知a+b=1. 求证: b/(a^3-1)-a/(b^3-1)=2(a-b)/(a^2b^2+3)
解答:
1. 已知a²-a+1=0,则a^1995+1/a^1995=
a²-a+1=0--->(a+1)(a²-a+1)=a³+1=0--->a³=-1
a^1995 = a^(3*665) = (a³)^665 = -1
--->a^1995+1/a^1995 = -2
2.
b²-3b-(b-1)√(b²-4)+2
=(b-1)(b-2)-(b-1)√(b²-4)
=(b-1)√(b-2)[√(b-2)-√(b+2)]
b²+3b-(b+1)√(b²-4)+2
=(b+1)(b+2)-(b+1)√(b²-4)
=(b+1)√(b+2)[√(b+2)-√(b-2)]
∴原题左边 = [-(b-1)√(b-2)]/[(b+1)√(b+2)]×√((b+2)/(b-2))=(1-b)/(1+b) = 右边
3. 已知a+b=1. 求证:b/(a³-1)-a/(b³-1)=2(a-b)/(a²b²+3)
b/(a³-1) - a/(b³-1)
= (1-a)/(a³-1) - (1-b)/(b³-1)
= 1/(b²+b+1) - 1/(a²+a+1)
= [(a²+a+1)-(b²+b+1)]/[(b²+b+1)(a²+a+1)]
= [(a²-b²)+(a-b)]/(a²b²+ab²+a²b+b²+a²+ab+a+b+1)
= [(a-b)(a+b)+(a-b)]/[a²b²+ab(a+b)+(a+b)²-ab+(a+b)+1]
= 2(a-b)/(a²b²+3)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。