首页 > 留学知识库

问题: 不等式

证明1+1/3^2+1/5^2+......+1/(2n-1)^2<5/4

解答:

1+1/3^2+1/5^2+......+1/(2n-1)^2<5/4
注明:使用“放缩法”
1/3^2<1/2*4
1/5^2<1/4*6
.....
1/(2n-1)^2<1/[(2n-2)(2n)]
1+1/3^2+1/5^2+......+1/(2n-1)^2
<1+1/2*4+1/4*6+....1/[(2n-2)(2n)]
=1+(1/2)[(1/2)-(1/4)]+(1/2)[(1/4)-(1/6)]+...+(1/2)[(1/(2n-2)-(1/(2n)]
=1+(1/2)[1/2-1/4+1/4-1/6+....+1/(2n-2)-1/2n]
=1+(1/2)(1/2-1/2n)
=1+1/4-1/4n
<5/4

得证.
补充:(2n-1)^2=4n^-4n+1>4n^-4n=2n(2n-2)
1/(2n-1)^2<1/[2n(2n-2)]