首页 > 留学知识库

问题: P为椭圆(x^2/a^2)+(y^2/b^2)=1上一点 F1,F2为焦点 pF1F2=75度p

P为椭圆(x^2/a^2)+(y^2/b^2)=1上一点 F1,F2为焦点
PF1F2=75度 PF2F1=15度.求椭圆离心率

解答:

P为椭圆(x^2/a^2)+(y^2/b^2)=1上一点 F1,F2为焦点,角PF1F2=75度, 角PF2F1=15度,

c^2 = a^2 - b^2;

角F1PF2 = 90 度,
|PF1| + |PF2| = 2a;
|F1F2| = 2c,

在三角形 PF1F2中, |PF1|^2 + |PF2|^2 = |F1F2|^2;
|PF1| = 2c*cos75,
|PF2| = 2c*sin75,

|PF1|*|PF2| = 4c^2*cos75*sin75
=2c^2sin150
= c^2;

4a^2 = |PF1|^2+|PF2|^2 + 2|PF1|*|PF2|
= 4c^2 + 2|PF1|*|PF2|
= 4c^2 + 2c^2 = 6c^2
2a^2 = 3c^2,

e = c/a = sqrt(2/3) = sqrt(6)/3,
椭圆离心率是 sqrt(6)/3.