问题: 抽象函数问题
如图
解答:
1,
f(m+n) = f(m) + f(n) -1,
x>0, f(x) >1,
m = n = 0;
f(0) = 2f(0) - 1,
f(0) = 1,
x>0, f(x) > f(0) = 1;
m = -n,
f(0) = f(m) + f(-m) -1;
f(-m) = 2 -f(m);
x2 > x1,
x2 - x1 > 0,
f(x2-x1) >1,
f(x2-x1) = f(x2) + f(-x1)-1 >1,
f(x2) + f(-x1) > 2;
f(x2) + 2-f(x1) >2;
f(x2)-f(x1) > 0,
f(x2) > f(x1),
f(x)在R上是增函数;
2,
f(3) = 4,
f(3) = f(1) + f(2) -1;
f(2) = f(1) + f(1) -1;
4 = 3f(1) -2;
f(1) = 2;
f(x)是R上的增函数,
f(a^2 + a-5) < 2;
f(a^2+a-5) <2 = f(1);
a^2+a-5 < 1;
a^2 + a -6 <0;
-3 < a< 2;
不等式的解集是:
-3 < a < 2。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。