问题: 在三角形ABC中,已知(sinA+sinB+sinC)(sinA+sinB-sinC)=
sinAsinB,求角C
解答:
已知(sinA+sinB+sinC)(sinA+sinB-sinC)= sinAsinB
(sinA+sinB+sinC)(sinA+sinB-sinC)
=(sinA+sinB)^2 -sin^2(C)
=sin^2(A) + sin^2(B) + 2sinA*sinB - sin^2(C)
=sinA*sinB,
sin^2(A) + sin^2(B) - sin^2(C) = -sinA*sinB
由正弦定理,
a/sinA = b/sinB = c/sinC = 2R,
余弦定理,
cosC = (a^2+b^2-c^2)/(2ac)
= (sin^2(A) + sin^2(B) - sin^2(C))/(2sinA*sinB)
=(-sinA*sinB)/(2sinA*sinB)
= -1/2
从而,C = 120 度.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。