首页 > 留学知识库

问题: 在三角形ABC中,已知(sinA+sinB+sinC)(sinA+sinB-sinC)=

sinAsinB,求角C

解答:

已知(sinA+sinB+sinC)(sinA+sinB-sinC)= sinAsinB

(sinA+sinB+sinC)(sinA+sinB-sinC)
=(sinA+sinB)^2 -sin^2(C)
=sin^2(A) + sin^2(B) + 2sinA*sinB - sin^2(C)
=sinA*sinB,

sin^2(A) + sin^2(B) - sin^2(C) = -sinA*sinB

由正弦定理,
a/sinA = b/sinB = c/sinC = 2R,

余弦定理,
cosC = (a^2+b^2-c^2)/(2ac)
= (sin^2(A) + sin^2(B) - sin^2(C))/(2sinA*sinB)
=(-sinA*sinB)/(2sinA*sinB)
= -1/2
从而,C = 120 度.