首页 > 留学知识库

问题: 不等式

已知x,y都是正实数
求证:(x^2+y^2)^(1/2)>(x^3+y^3)^(1/3)

解答:

[(x^2+y^2)^(/2)]^6-[(x^3+y^3)^(1/3)]^6
=(x^2+y^2)^3-(x^3+y^3)^2
=x^6+y^6+3(x^4)(y^2)+3(x^2)(y^4)-[x^6+y^6+2(x^3)(y^3)]
=(x^2)(y^2)[3(x^2)+3(y^2)+2xy]
=(x^2)(y^2)[(x+y)^2+2(x^2)+2(y^2)]>0
所以不等式成立