首页 > 留学知识库

问题: 圆锥曲线

已知P(根2,1)在双曲线x^2-y^2=a上,过点P作两直线l1垂直l2 且他们与渐近线都不垂直,设l1,l2与双曲线的另一支交点为A,B 求三角形PAB的重心轨迹

解答:

已知P(√2,1)在双曲线x²-y²=a上,过点P作两直线L1⊥L2 且他们与渐近线都不垂直,设l1,l2与双曲线的另一支交点为A,B 求△PAB的重心轨迹

P(√2,1)在双曲线x²-y²=a上--->a=2-1=1
--->双曲线方程x²-y²=1
设:过P的直线方程为 y-1=k(x-√2)--->y=kx-(√2k-1)
L与双曲线交于P(√2,1),A(xA,yA)
L与双曲线方程联立:x²-[kx-(√2k-1)]²=1
--->(1-k²)x²+2k(√2k-1)x-(√2k-1)²-1=0........(*)
--->√2*xA = -[(√2k-1)²+1}/(k²-1)=-[2k²-2√2k+2)}/(k²-1)
--->xA=√2(k²-√2k+1)/(k²-1)
--->yA=kx-(√2k-1)=[√2k(k²-√2k+1)-(√2k-1)(k²-1)]/(k²-1)
   =[√2k(k²-√2k+1)-(√2k)(k²-1)+(k²-1)]/(k²-1)
   =[√2k(-√2k+2)+(k²-1)]/(k²-1)
   =[-k²+2√2k-1]/(k²-1)
同理,用-1/k代替k
--->xB =√2(1/k²+√2/k+1)/(1/k²-1)
    =√2(1+√2k+k²)/(1-k²)
  yB = [-1/k²-2√2/k-1]/(1/k²-1)
    = [-1-2√2k-k²]/(1-k²)
--->xA+xB = 2√2k/(1-k²)
  yA+yB = -4√2k/(1-k²) = -2(xA+xB)

设△PAB的重心G(x,y)
--->x=(xP+xA+xB)/3--->xA+xB=3x-√2
  y=(yP+yA+yB)/3--->yA+yB=3y-1
--->3y-1 = -2(3x-√2)
--->6x+3y=2√2+1.............此即△PAB的重心G轨迹方程