首页 > 留学知识库

问题: 求a、b、c的值

设a、b、c为正数,且满足a2+b2=c2
(1) 求证:log2[1+(b+c)/a]+log2[1+(a-c)/b]=1
(2)若log4[1+(b+c)/a]=1,log8(a+b-c)=2/3,求a、b、c的值

解答:

(1) log2[1+(b+c)/a]+log2[1+(a-c)/b]=log 2 ([a+b+c]/a)*([b+(a-c)]/b]=log 2 ([a+b]^2-c^2)/(ab)=log 2 [a^2+b^2+2ab-c^2]/(ab)=log (2ab/(ab))=log2 2=1

(2) log 4 [a+b+c]/a=1 --> (a+b+c)/a=4, a+b+c=4a, 3a=b+c, c=3a-b

log8(a+b-c)=2/3---> a+b-c=4, a+b-3a+b=4, b-a=2,
b=a+2, c=2a-2, a^2+b^2=c^2--->a^2+(a+2)^2=(2a-2)^2, a^2+a^2+4a+4=4a^2-8a+4, 2a^2-12a=0, a=6, b=8, c=10