首页 > 留学知识库

问题: 在四棱锥E-ABCD中,底面ABCD为梯形,AB∥DC,2AB=3DC,M是AE的中点,设E-ABC

在四棱锥E-ABCD中,底面ABCD为梯形,AB∥DC,2AB=3DC,M是AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为
(A)2V/5 (B)V/3(C)2V/3 (D) 3V/10
要具体的解答过程

解答:

如图:AB∥DC,2AB=3DC--->S△ABC:S△ADC=AB:DC=3:2
--->S△ABC=(3/5)S(ABCD)--->V(E-ABC)=(3/5)V
即:V(A-EBC)=(3/5)V
M是AE的中点--->V(M-EBC)=(1/2)V(A-EBC)=(3/10)V ......选D