问题: 初中数学
对a>b>c>0,作二次方程:x^2-(a+b+c)x+(ab+bc+ca)=0
1,若方程有实根,求证a、b、c不能作一个三角形的三边长;
2,若方程有实根x,求证a>x>b+c;
3,当方程有实根6,9时,求正整数a,b,c的值.
解答:
1.
△=(a+b+c)^2-4(ab+bc+ca)>=0
a>b>c>0
a^2+b^2+c^2>=2ab+2bc+2ca>2b^2+2c^2+2cb
a^2>b^2+c^2+2cb=(b+c)^2
a>b+c
a、b、c不能作一个三角形的三边长
2.
f(x)=x^2-(a+b+c)x+(ab+bc+ca),开口向上
对称轴x=(a+b+c)/2
f(a)=a^2-(a+b+c)a+(ab+bc+ca)=bc>0
f(b+c)=(b+c)^2-(a+b+c)(b+c)+(ab+bc+ca)=bc>0
a>b+c,a/2>(b+c)/2,
a>(a+b+c)/2
b+c<(a+b+c)/2
a,b+c在两根两侧之外
a>x>b+c
3.
a+b+c=15
ab+bc+ca=54
b+c>=2+1=3,a<=12
a>9>6>b+c
a>=10
10<=a<=12
a=10,b+c=5
10b+bc+10c=54
bc=4
b=4,c=1
a=11,b+c=4
11b+bc+11c=54
bc=10
无正整数解
a=12,b+c=3
12b+bc+12c=54
bc=18
无正整数解
a=10,b=4,c=1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。