首页 > 留学知识库

问题: 高一数列

请看附件,有些符号直接打不好辨认,有一定难度啊!

解答:

(1)
Δan = a(n+1)-an = (5/2)[(n+1)²-n²]-(13/2)[(n+1)-n]
        = (5/2)(2n+1)-13/2 = 5n-4 = 1+5(n-1)
--->{Δan}是以1为首项、5为公差的等差数列

(2)a1=-13
 Δ²an-Δa(n+1)+an = -2^(2n)
= [Δa(n+1)-Δan]-Δa(n+1)+an
= -Δan + an
= -[a(n+1)-an]+an
= 2an-a(n+1)
--->a(n+1)-2an = 2^(2n)
--->a(n+1)/2^(n+1)-an/2^n = 2^(n-1)
即:数列{a(n+1)/2^(n+1)-an/2^n}为首项是1、公比是2的等比数列

该数列前n-1项和 =
= an/2^n-a1/2 = 1+2+4+...+2^(n-2) = 2^(n-1) - 1
--->an/2^n = -15/2 + 2^(n-1)
--->通项公式:a(n) = 2^(2n-1) - 15*2^(n-1)

(3)令a'(n) = 2ln2*2^(2n-1)-15ln2*2^(n-1)
       = ln2*2^(n-1)[2^(n+1)-15] = 0
--->2^(n+1)=15--->n+1=log2_15∈(3,4)--->n∈(2,3)
∵n为整数--->n=2或3时,a(n)取得极小值
比较a2与a3--->a3=-28为数列{an}的最小值